Description

Welcome to Real Analysis is designed for use in an introductory undergraduate course in real analysis. Much of the development is in the setting of the general metric space. The book makes substantial use not only of the real line and $n$-dimensional Euclidean space, but also sequence and function spaces. Proving and extending results from single-variable calculus provides motivation throughout. The more abstract ideas come to life in meaningful and accessible applications. For example, the contraction mapping principle is used to prove an existence and uniqueness theorem for solutions of ordinary differential equations and the existence of certain fractals; the continuity of the integration operator on the space of continuous functions on a compact interval paves the way for some results about power series.

The exposition is exceedingly clear and well-motivated. There are a wide variety of exercises and many pedagogical innovations. For example, each chapter includes Reading Questions so that students can check their understanding. In addition to the standard material in a first real analysis course, the book contains two concluding chapters on dynamical systems and fractals as an illustration of the power of the theory developed.

Welcome to Real Analysis: Continuity and Calculus, Distance and Dynamics

Product form

£64.22

Includes FREE delivery
Usually despatched within 3 days
Paperback / softback by Benjamin B. Kennedy

1 in stock

Short Description:

Welcome to Real Analysis is designed for use in an introductory undergraduate course in real analysis. Much of the development... Read more

    Publisher: American Mathematical Society
    Publication Date: 30/04/2022
    ISBN13: 9781470464547, 978-1470464547
    ISBN10: 1470464543

    Number of Pages: 370

    Non Fiction , Mathematics & Science , Education

    Description

    Welcome to Real Analysis is designed for use in an introductory undergraduate course in real analysis. Much of the development is in the setting of the general metric space. The book makes substantial use not only of the real line and $n$-dimensional Euclidean space, but also sequence and function spaces. Proving and extending results from single-variable calculus provides motivation throughout. The more abstract ideas come to life in meaningful and accessible applications. For example, the contraction mapping principle is used to prove an existence and uniqueness theorem for solutions of ordinary differential equations and the existence of certain fractals; the continuity of the integration operator on the space of continuous functions on a compact interval paves the way for some results about power series.

    The exposition is exceedingly clear and well-motivated. There are a wide variety of exercises and many pedagogical innovations. For example, each chapter includes Reading Questions so that students can check their understanding. In addition to the standard material in a first real analysis course, the book contains two concluding chapters on dynamical systems and fractals as an illustration of the power of the theory developed.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account