Description

In earlier forewords to the books in this series on Discrete Event Dynamic Systems (DEDS), we have dwelt on the pervasive nature of DEDS in our human-made world. From manufacturing plants to computer/communication networks, from traffic systems to command-and-control, modern civilization cannot function without the smooth operation of such systems. Yet mathemat­ ical tools for the analysis and synthesis of DEDS are nascent when compared to the well developed machinery of the continuous variable dynamic systems char­ acterized by differential equations. The performance evaluation tool of choice for DEDS is discrete event simulation both on account of its generality and its explicit incorporation of randomness. As it is well known to students of simulation, the heart of the random event simulation is the uniform random number generator. Not so well known to the practitioners are the philosophical and mathematical bases of generating "random" number sequence from deterministic algorithms. This editor can still recall his own painful introduction to the issues during the early 80's when he attempted to do the first perturbation analysis (PA) experiments on a per­ sonal computer which, unbeknownst to him, had a random number generator with a period of only 32,768 numbers. It is no exaggeration to say that the development of PA was derailed for some time due to this ignorance of the fundamentals of random number generation.

Uniform Random Numbers: Theory and Practice

Product form

£161.99

Includes FREE delivery
RRP: £179.99 You save £18.00 (10%)
Usually despatched within 4 days
Hardback by Shu Tezuka

1 in stock

Short Description:

In earlier forewords to the books in this series on Discrete Event Dynamic Systems (DEDS), we have dwelt on the... Read more

    Publisher: Springer
    Publication Date: 31/05/1995
    ISBN13: 9780792395720, 978-0792395720
    ISBN10: 0792395727

    Number of Pages: 209

    Non Fiction , Mathematics & Science , Education

    Description

    In earlier forewords to the books in this series on Discrete Event Dynamic Systems (DEDS), we have dwelt on the pervasive nature of DEDS in our human-made world. From manufacturing plants to computer/communication networks, from traffic systems to command-and-control, modern civilization cannot function without the smooth operation of such systems. Yet mathemat­ ical tools for the analysis and synthesis of DEDS are nascent when compared to the well developed machinery of the continuous variable dynamic systems char­ acterized by differential equations. The performance evaluation tool of choice for DEDS is discrete event simulation both on account of its generality and its explicit incorporation of randomness. As it is well known to students of simulation, the heart of the random event simulation is the uniform random number generator. Not so well known to the practitioners are the philosophical and mathematical bases of generating "random" number sequence from deterministic algorithms. This editor can still recall his own painful introduction to the issues during the early 80's when he attempted to do the first perturbation analysis (PA) experiments on a per­ sonal computer which, unbeknownst to him, had a random number generator with a period of only 32,768 numbers. It is no exaggeration to say that the development of PA was derailed for some time due to this ignorance of the fundamentals of random number generation.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account