Description

The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a mass average value. The chapter also considers an internal heat source linearly reliant on temperature. The second chapter focuses on the sensitivity of the numerical modeling technique for conjugate heat transfer involving high speed compressible flow over a cylinder. The last chapter presents an overview of the fundamental solution (FS) based finite element method (FEM) and its application in heat conduction problems. First, basic formulations of FS-FEM are presented, such as the nonconforming intra-element field, auxiliary conforming frame field, modified variational principle, and stiffness equation. Then, the FS-FE formulation for heat conduction problems in cellular solids with circular holes, functionally graded materials, and natural-hemp-fiber-filled cement composites are described.

Understanding Heat Conduction

Product form

£76.49

Includes FREE delivery
RRP: £84.99 You save £8.50 (10%)
Usually despatched within 3 days
Paperback / softback by William Kelley

1 in stock

Short Description:

The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction... Read more

    Publisher: Nova Science Publishers Inc
    Publication Date: 01/04/2021
    ISBN13: 9781536191820, 978-1536191820
    ISBN10: 1536191825

    Number of Pages: 180

    Non Fiction , Mathematics & Science , Education

    Description

    The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a mass average value. The chapter also considers an internal heat source linearly reliant on temperature. The second chapter focuses on the sensitivity of the numerical modeling technique for conjugate heat transfer involving high speed compressible flow over a cylinder. The last chapter presents an overview of the fundamental solution (FS) based finite element method (FEM) and its application in heat conduction problems. First, basic formulations of FS-FEM are presented, such as the nonconforming intra-element field, auxiliary conforming frame field, modified variational principle, and stiffness equation. Then, the FS-FE formulation for heat conduction problems in cellular solids with circular holes, functionally graded materials, and natural-hemp-fiber-filled cement composites are described.

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account