Description

The emergence of nanoelectronics has led us to renew the concepts of transport theory used in semiconductor device physics and the engineering community. It has become crucial to question the traditional semi-classical view of charge carrier transport and to adequately take into account the wave-like nature of electrons by considering not only their coherent evolution but also the out-of-equilibrium states and the scattering effects.

This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices.

The Wigner Monte Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence

Product form

£138.95

Includes FREE delivery
Usually despatched within days
Hardback by Damien Querlioz , Philippe Dollfus

1 in stock

Short Description:

The emergence of nanoelectronics has led us to renew the concepts of transport theory used in semiconductor device physics and... Read more

    Publisher: ISTE Ltd and John Wiley & Sons Inc
    Publication Date: 13/04/2010
    ISBN13: 9781848211506, 978-1848211506
    ISBN10: 1848211503

    Number of Pages: 256

    Non Fiction , Technology, Engineering & Agriculture , Education

    Description

    The emergence of nanoelectronics has led us to renew the concepts of transport theory used in semiconductor device physics and the engineering community. It has become crucial to question the traditional semi-classical view of charge carrier transport and to adequately take into account the wave-like nature of electrons by considering not only their coherent evolution but also the out-of-equilibrium states and the scattering effects.

    This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account