Description

An Optimality Theoretic grammar arises from the comparison of candidates over a set of constraints, oriented toward obtaining certain of those candidates as optimal. The typology of a specified system collects its grammars, encompassing all total domination orders among the posited constraints. Considerable progress has been made in understanding the internal structure of Optimality Theoretic grammars but, in this book, we move up a level from grammar to typology, probing the structure that emerges from the most basic commitments of the theory. Comparison is once again central: a constraint viewed at the typological level rates entire grammars against each other. From this perspective, the constraint goes beyond its familiar role as an engine of comparison based on quantitative penalties and instead takes the form of a more abstract order and equivalence structure. This “Equivalence-augmented Privileged Order” (EPO) can be presented as a kind of enriched Hasse diagram. The collection of the EPOs, one for each constraint, forms the MOAT, the “Mother of All Tableaux”. The EPOs of a typology’s unique MOAT are respected in every violation tableau associated with it. With the MOAT concept in place, it becomes possible to understand exactly which sets of disjoint grammars constitute valid typologies. This finding provides the conditions under which grammars of a given typology can merge to produce another, simpler typology and thereby abstract away informatively from various differences between them. Geometrically, the MOAT concept enables us to show, following the insights of Jason Riggle, that the grammars of a typology neatly partition its representation on the permutohedron into connected, spherically convex regions. Discussion proceeds along both concrete and abstract lines, facilitating access for readers across a wide range of interests.

The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-Scale Structure of Optimality Theory

Product form

£75.00

Includes FREE delivery
Usually despatched within 3 days
Hardback by Nazarre Merchant , Alan Prince

1 in stock

Short Description:

An Optimality Theoretic grammar arises from the comparison of candidates over a set of constraints, oriented toward obtaining certain of... Read more

    Publisher: Equinox Publishing Ltd
    Publication Date: 06/09/2023
    ISBN13: 9781781798997, 978-1781798997
    ISBN10: 1781798990

    Number of Pages: 368

    Non Fiction , Dictionaries, Reference & Language

    Description

    An Optimality Theoretic grammar arises from the comparison of candidates over a set of constraints, oriented toward obtaining certain of those candidates as optimal. The typology of a specified system collects its grammars, encompassing all total domination orders among the posited constraints. Considerable progress has been made in understanding the internal structure of Optimality Theoretic grammars but, in this book, we move up a level from grammar to typology, probing the structure that emerges from the most basic commitments of the theory. Comparison is once again central: a constraint viewed at the typological level rates entire grammars against each other. From this perspective, the constraint goes beyond its familiar role as an engine of comparison based on quantitative penalties and instead takes the form of a more abstract order and equivalence structure. This “Equivalence-augmented Privileged Order” (EPO) can be presented as a kind of enriched Hasse diagram. The collection of the EPOs, one for each constraint, forms the MOAT, the “Mother of All Tableaux”. The EPOs of a typology’s unique MOAT are respected in every violation tableau associated with it. With the MOAT concept in place, it becomes possible to understand exactly which sets of disjoint grammars constitute valid typologies. This finding provides the conditions under which grammars of a given typology can merge to produce another, simpler typology and thereby abstract away informatively from various differences between them. Geometrically, the MOAT concept enables us to show, following the insights of Jason Riggle, that the grammars of a typology neatly partition its representation on the permutohedron into connected, spherically convex regions. Discussion proceeds along both concrete and abstract lines, facilitating access for readers across a wide range of interests.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account