Description

Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data

Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how.

Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments.

When an organization manages its data effectively, its data science program becomes a fully scalable function that’s both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise.

By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements:

  • Improving time-to-value with infused AI models for common use cases
  • Optimizing knowledge work and business processes
  • Utilizing AI-based business intelligence and data visualization
  • Establishing a data topology to support general or highly specialized needs
  • Successfully completing AI projects in a predictable manner
  • Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing

When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations.

Smarter Data Science: Succeeding with Enterprise-Grade Data and AI Projects

Product form

£34.19

Includes FREE delivery
RRP: £37.99 You save £3.80 (10%)
Usually despatched within 5 days
Paperback / softback by Neal Fishman , Cole Stryker

1 in stock

Short Description:

Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data... Read more

    Publisher: John Wiley & Sons Inc
    Publication Date: 09/07/2020
    ISBN13: 9781119693413, 978-1119693413
    ISBN10: 1119693411

    Number of Pages: 304

    Non Fiction , Business, Finance & Law

    Description

    Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data

    Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how.

    Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments.

    When an organization manages its data effectively, its data science program becomes a fully scalable function that’s both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise.

    By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements:

    • Improving time-to-value with infused AI models for common use cases
    • Optimizing knowledge work and business processes
    • Utilizing AI-based business intelligence and data visualization
    • Establishing a data topology to support general or highly specialized needs
    • Successfully completing AI projects in a predictable manner
    • Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing

    When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account