Description

A revolutionary new framework that draws on insights from ecology for the design and analysis of long-duration robots

Robots are increasingly leaving the confines of laboratories, warehouses, and manufacturing facilities, venturing into agriculture and other settings where they must operate in uncertain conditions over long timescales. This multidisciplinary book draws on the principles of ecology to show how robots can take full advantage of the environments they inhabit, including as sources of energy.

Magnus Egerstedt introduces a revolutionary new design paradigm—robot ecology—that makes it possible to achieve long-duration autonomy while avoiding catastrophic failures. Central to ecology is the idea that the richness of an organism’s behavior is a function of the environmental constraints imposed by its habitat. Moving beyond traditional strategies that focus on optimal policies for making robots achieve targeted tasks, Egerstedt explores how to use survivability constraints to produce both effective and provably safe robot behaviors. He blends discussions of ecological principles with the development of control barrier functions as a formal approach to constraint-based control design, and provides an in-depth look at the design of the SlothBot, a slow and energy-efficient robot used for environmental monitoring and conservation.

Visionary in scope, Robot Ecology presents a comprehensive and unified methodology for designing robots that can function over long durations in diverse natural environments.

Robot Ecology: Constraint-Based Design for Long-Duration Autonomy

Product form

£58.50

Includes FREE delivery
RRP: £65.00 You save £6.50 (10%)
Usually despatched within days
Hardback by Magnus Egerstedt

1 in stock

Short Description:

A revolutionary new framework that draws on insights from ecology for the design and analysis of long-duration robotsRobots are increasingly... Read more

    Publisher: Princeton University Press
    Publication Date: 28/12/2021
    ISBN13: 9780691211688, 978-0691211688
    ISBN10: 069121168X

    Number of Pages: 360

    Non Fiction , Technology, Engineering & Agriculture , Education

    • Tell a unique detail about this product5

    Description

    A revolutionary new framework that draws on insights from ecology for the design and analysis of long-duration robots

    Robots are increasingly leaving the confines of laboratories, warehouses, and manufacturing facilities, venturing into agriculture and other settings where they must operate in uncertain conditions over long timescales. This multidisciplinary book draws on the principles of ecology to show how robots can take full advantage of the environments they inhabit, including as sources of energy.

    Magnus Egerstedt introduces a revolutionary new design paradigm—robot ecology—that makes it possible to achieve long-duration autonomy while avoiding catastrophic failures. Central to ecology is the idea that the richness of an organism’s behavior is a function of the environmental constraints imposed by its habitat. Moving beyond traditional strategies that focus on optimal policies for making robots achieve targeted tasks, Egerstedt explores how to use survivability constraints to produce both effective and provably safe robot behaviors. He blends discussions of ecological principles with the development of control barrier functions as a formal approach to constraint-based control design, and provides an in-depth look at the design of the SlothBot, a slow and energy-efficient robot used for environmental monitoring and conservation.

    Visionary in scope, Robot Ecology presents a comprehensive and unified methodology for designing robots that can function over long durations in diverse natural environments.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account