Description

Reverse Engineering in Control Design proposes practical approaches to building a standard H-infinity problem taking into account an initial controller. Such approaches allow us to mix various control objectives and to initialize procedures for a fixed-structure controller design. They are based on the Observer-Based Realization (OBR) of controllers. The interest of OBR from the controller implementation point of view is detailed and highlighted in this book through academic examples. An open-source toolbox is available to implement these approaches in Matlab®.
Throughout the book academic applications are proposed to illustrate the various basic principles. These applications have been chosen by the author for their pedagogic contents and demo files and embedded Matlab® functions can be downloaded so readers can run these illustrations on their personal computers.

Contents

1. Observer-based Realization of a Given Controller.
2. Cross Standard Form and Reverse Engineering.
3. Reverse Engineering for Mechanical Systems.
Appendix 1. A Preliminary Methodological Example.
Appendix 2. Discrete-time Case.
Appendix 3. Nominal State-feedback for Mechanical Systems.
Appendix 4. Help of Matlab® Functions.

About the Authors

Daniel Alazard is Professor in System Dynamics and Control at Institut Supérieur de l'Aéronautique et de l’Espace (ISAE), Toulouse, France – SUPAERO Graduate Program. His main research interests concern robust control, flexible structure control and their applications to various aerospace systems.

Reverse Engineering in Control Design

Product form

£138.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Daniel Alazard

1 in stock

Short Description:

Reverse Engineering in Control Design proposes practical approaches to building a standard H-infinity problem taking into account an initial controller.... Read more

    Publisher: ISTE Ltd and John Wiley & Sons Inc
    Publication Date: 15/02/2013
    ISBN13: 9781848215238, 978-1848215238
    ISBN10: 1848215231

    Number of Pages: 192

    Non Fiction , Technology, Engineering & Agriculture , Education

    Description

    Reverse Engineering in Control Design proposes practical approaches to building a standard H-infinity problem taking into account an initial controller. Such approaches allow us to mix various control objectives and to initialize procedures for a fixed-structure controller design. They are based on the Observer-Based Realization (OBR) of controllers. The interest of OBR from the controller implementation point of view is detailed and highlighted in this book through academic examples. An open-source toolbox is available to implement these approaches in Matlab®.
    Throughout the book academic applications are proposed to illustrate the various basic principles. These applications have been chosen by the author for their pedagogic contents and demo files and embedded Matlab® functions can be downloaded so readers can run these illustrations on their personal computers.

    Contents

    1. Observer-based Realization of a Given Controller.
    2. Cross Standard Form and Reverse Engineering.
    3. Reverse Engineering for Mechanical Systems.
    Appendix 1. A Preliminary Methodological Example.
    Appendix 2. Discrete-time Case.
    Appendix 3. Nominal State-feedback for Mechanical Systems.
    Appendix 4. Help of Matlab® Functions.

    About the Authors

    Daniel Alazard is Professor in System Dynamics and Control at Institut Supérieur de l'Aéronautique et de l’Espace (ISAE), Toulouse, France – SUPAERO Graduate Program. His main research interests concern robust control, flexible structure control and their applications to various aerospace systems.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account