Description

Whether you're part of a small startup or a planet-spanning megacorp, this practical book shows data scientists, SREs, and business owners how to run ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guests show you how to run an efficient ML system. Whether you want to increase revenue, optimize decision-making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind. You'll examine: What ML is: how it functions and what it relies on Conceptual frameworks for understanding how ML "loops" work Effective "productionization," and how it can be made easily monitorable, deployable, and operable Why ML systems make production troubleshooting more difficult, and how to get around them How ML, product, and production teams can communicate effectively

Reliable Machine Learning: Applying SRE Principles to ML in Production

Product form

£57.59

Includes FREE delivery
RRP: £63.99 You save £6.40 (10%)
Usually despatched within days
Paperback / softback by Cathy Chen , Niall Richard Murphy

2 in stock

Short Description:

Whether you're part of a small startup or a planet-spanning megacorp, this practical book shows data scientists, SREs, and business... Read more

    Publisher: O'Reilly Media
    Publication Date: 30/09/2022
    ISBN13: 9781098106225, 978-1098106225
    ISBN10: 1098106229

    Number of Pages: 350

    Non Fiction , Computing

    Description

    Whether you're part of a small startup or a planet-spanning megacorp, this practical book shows data scientists, SREs, and business owners how to run ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guests show you how to run an efficient ML system. Whether you want to increase revenue, optimize decision-making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind. You'll examine: What ML is: how it functions and what it relies on Conceptual frameworks for understanding how ML "loops" work Effective "productionization," and how it can be made easily monitorable, deployable, and operable Why ML systems make production troubleshooting more difficult, and how to get around them How ML, product, and production teams can communicate effectively

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account