Description

Book Synopsis
In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Chapter 5 we show how the above mentioned results allows to prove the existence of Eulerian solution to the semi-geostrophic equation. In Chapter 6 we prove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.

Table of Contents

Introduction.- 1 An overview on Optimal Transportation.- 2 The Monge-Ampère Equation.- 3 Sobolev regularity of solutions to the Monge-Ampère equation.- 4 Second order stability for the Monge-Ampère equation and applications.- 5 The semigeostrophic equations.- 6 Partial regularity of optimal transport maps.- A. Properties of convex functions.- B. A proof of John Lemma.- Bibliography.

Regularity of Optimal Transport Maps and

Product form

£16.14

Includes FREE delivery

RRP £16.99 – you save £0.85 (5%)

Order before 4pm today for delivery by Sat 20 Dec 2025.

A Paperback / softback by Guido Philippis

1 in stock


    View other formats and editions of Regularity of Optimal Transport Maps and by Guido Philippis

    Publisher: Birkhauser Verlag AG
    Publication Date: 05/09/2013
    ISBN13: 9788876424564, 978-8876424564
    ISBN10: 8876424563
    Also in:
    Optimization

    Description

    Book Synopsis
    In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Chapter 5 we show how the above mentioned results allows to prove the existence of Eulerian solution to the semi-geostrophic equation. In Chapter 6 we prove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.

    Table of Contents

    Introduction.- 1 An overview on Optimal Transportation.- 2 The Monge-Ampère Equation.- 3 Sobolev regularity of solutions to the Monge-Ampère equation.- 4 Second order stability for the Monge-Ampère equation and applications.- 5 The semigeostrophic equations.- 6 Partial regularity of optimal transport maps.- A. Properties of convex functions.- B. A proof of John Lemma.- Bibliography.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account