Description

Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, supplemental reading lists, and links to online videos, interactive materials, and other resources.

Pedagogical Features
*Playful, conversational style and gradual approach; suitable for students without strong math backgrounds.
*End-of-chapter exercises based on real data supplied in the free R package.
*Technical explanation and equation/output boxes.
*Appendices on how to install R and work with the sample datasets.

Reasoning with Data: An Introduction to Traditional and Bayesian Statistics Using R

Product form

£40.99

Includes FREE delivery
Usually despatched within 4 days
Paperback / softback by Jeffrey M. Stanton

1 in stock

Short Description:

Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about... Read more

    Publisher: Guilford Publications
    Publication Date: 16/06/2017
    ISBN13: 9781462530267, 978-1462530267
    ISBN10: 1462530265

    Number of Pages: 325

    Non Fiction , Politics, Philosophy & Society

    Description

    Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, supplemental reading lists, and links to online videos, interactive materials, and other resources.

    Pedagogical Features
    *Playful, conversational style and gradual approach; suitable for students without strong math backgrounds.
    *End-of-chapter exercises based on real data supplied in the free R package.
    *Technical explanation and equation/output boxes.
    *Appendices on how to install R and work with the sample datasets.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account