Description
Whether you're a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where do I begin? This step-by-step guide teaches you how to build practical deep learning applications for the cloud and mobile using a hands-on approach. Relying on years of industry experience transforming deep-learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, CoreML, and TensorFlow Lite and go from zero to a production-quality system quickly. Develop deep learning applications for the desktop, cloud, smartphones, browser, and Raspberry Pi Learn by building examples such as Silicon Valley's "Not Hotdog," image search engines, and your own mini-autonomous car Use transfer learning to train models in minutes Optimize your apps to run efficiently on different hardware Discover strategies to scale up from a single user to millions Sharpen practical skills for data collection, model interoperability, and model debugging using visualizations Uncover the potential for bias and explore the ethical underpinnings for AI-driven technology