Description

OPEN CHANNEL DESIGN

A fundamental knowledge of flow in open channels is essential for the planning and design of systems to manage water resources. Open channel design has applications within many fields, including civil engineering, agriculture, hydrology, geomorphology, sedimentology, environmental fluid and sediment dynamics and river engineering.

Open Channel Design: Fundamentals and Applications covers permissible velocity, tractive force, and regime theory design methodologies and applications. Hydraulic structures for flow control and measurement are covered. Flow profiles and their design implications are covered. Sediment transport mechanics and moveable boundaries in channels are introduced. Finally, a brief treatment of the St. Venant equations and Navier-Stokes equations are introduced as topics to be explored in more advanced courses. The central goal is to prepare students for work in engineering offices where they will be involved with aspects of land development and related consulting work. Students will also be prepared for advanced courses that will involve computational fluid dynamics approaches for solving 2-d and 3-d problems in advanced graduate level courses.

Offering a fresh approach, Open Channel Design: Fundamentals and Applications prepares students for work in engineering offices where they will be involved with aspects of land development and related consulting work. It also introduces the reader to software packages including Mathematica, HecRas and HY8, all widely used in professional settings.

Open Channel Design: Fundamentals and Applications

Product form

£107.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Ernest W. Tollner

1 in stock

Short Description:

OPEN CHANNEL DESIGN A fundamental knowledge of flow in open channels is essential for the planning and design of systems... Read more

    Publisher: John Wiley and Sons Ltd
    Publication Date: 21/10/2021
    ISBN13: 9781119664246, 978-1119664246
    ISBN10: 1119664241

    Number of Pages: 336

    Non Fiction , Mathematics & Science , Education

    Description

    OPEN CHANNEL DESIGN

    A fundamental knowledge of flow in open channels is essential for the planning and design of systems to manage water resources. Open channel design has applications within many fields, including civil engineering, agriculture, hydrology, geomorphology, sedimentology, environmental fluid and sediment dynamics and river engineering.

    Open Channel Design: Fundamentals and Applications covers permissible velocity, tractive force, and regime theory design methodologies and applications. Hydraulic structures for flow control and measurement are covered. Flow profiles and their design implications are covered. Sediment transport mechanics and moveable boundaries in channels are introduced. Finally, a brief treatment of the St. Venant equations and Navier-Stokes equations are introduced as topics to be explored in more advanced courses. The central goal is to prepare students for work in engineering offices where they will be involved with aspects of land development and related consulting work. Students will also be prepared for advanced courses that will involve computational fluid dynamics approaches for solving 2-d and 3-d problems in advanced graduate level courses.

    Offering a fresh approach, Open Channel Design: Fundamentals and Applications prepares students for work in engineering offices where they will be involved with aspects of land development and related consulting work. It also introduces the reader to software packages including Mathematica, HecRas and HY8, all widely used in professional settings.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account