Description

The business cycle has long been the focus of empirical economic research. Until recently statistical analysis of macroeconomic fluctuations was dominated by linear time series methods. Over the past 15 years, however, economists have increasingly applied tractable parametric nonlinear time series models to business cycle data; most prominent in this set of models are the classes of Threshold AutoRegressive (TAR) models, Markov-Switching AutoRegressive (MSAR) models, and Smooth Transition AutoRegressive (STAR) models. In doing so, several important questions have been addressed in the literature, including: Do out-of-sample (point, interval, density, and turning point) forecasts obtained with nonlinear time series models dominate those generated with linear models? How should business cycles be dated and measured? What is the response of output and employment to oil-price and monetary shocks? How does monetary policy respond to asymmetries over the business cycle? Are business cycles due more to permanent or to transitory negative shocks? And, is the business cycle asymmetric, and does it matter? "Contributions to Economic Analysis" was established in 1952. The series purpose is to stimulate the international exchange of scientific information. The series includes books from all areas of macroeconomics and microeconomics.

Nonlinear Time Series Analysis of Business Cycles

Product form

£117.44

Includes FREE delivery
Usually despatched within 5 days
Hardback by C. Milas , P. A. Rothman

3 in stock

Short Description:

The business cycle has long been the focus of empirical economic research. Until recently statistical analysis of macroeconomic fluctuations was... Read more

    Publisher: Emerald Publishing Limited
    Publication Date: 08/02/2006
    ISBN13: 9780444518385, 978-0444518385
    ISBN10: 044451838X

    Number of Pages: 460

    Non Fiction , Business, Finance & Law

    Description

    The business cycle has long been the focus of empirical economic research. Until recently statistical analysis of macroeconomic fluctuations was dominated by linear time series methods. Over the past 15 years, however, economists have increasingly applied tractable parametric nonlinear time series models to business cycle data; most prominent in this set of models are the classes of Threshold AutoRegressive (TAR) models, Markov-Switching AutoRegressive (MSAR) models, and Smooth Transition AutoRegressive (STAR) models. In doing so, several important questions have been addressed in the literature, including: Do out-of-sample (point, interval, density, and turning point) forecasts obtained with nonlinear time series models dominate those generated with linear models? How should business cycles be dated and measured? What is the response of output and employment to oil-price and monetary shocks? How does monetary policy respond to asymmetries over the business cycle? Are business cycles due more to permanent or to transitory negative shocks? And, is the business cycle asymmetric, and does it matter? "Contributions to Economic Analysis" was established in 1952. The series purpose is to stimulate the international exchange of scientific information. The series includes books from all areas of macroeconomics and microeconomics.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account