Description

This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm.

Key features:

  • Provides an accessible introduction to pragmatic maximum likelihood modelling.
  • Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood.
  • Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data.
  • Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology.
  • Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB.
  • Provides all program code and software extensions on a supporting website.
  • Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters.

This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB

Product form

£87.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Russell B. Millar

1 in stock

Short Description:

This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference.... Read more

    Publisher: John Wiley & Sons Inc
    Publication Date: 02/09/2011
    ISBN13: 9780470094822, 978-0470094822
    ISBN10: 0470094826

    Number of Pages: 376

    Non Fiction , Mathematics & Science , Education

    Description

    This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm.

    Key features:

    • Provides an accessible introduction to pragmatic maximum likelihood modelling.
    • Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood.
    • Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data.
    • Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology.
    • Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB.
    • Provides all program code and software extensions on a supporting website.
    • Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters.

    This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account