Description

The exponential growth of technology forces all disciplines to adjust accordingly, so they can meet the demands of a very dynamic world that heavily depends upon it. Therefore, mathematics cannot be an exception. In fact, mathematics should be the first to adjust and in fact it is. In this volume, which is a continuation of the previous three under the same title, we present state-of-the-art iterative methods for solving equations related to concrete problems from diverse areas such as applied mathematics, mathematical: biology, chemistry, economics, physics and also engineering to mention a few. Most of these methods are new and a few are old but still very popular. One major problem with iterative methods is that the convergence domain is small in general. We have introduced a technique that finds a smaller set than before containing the iterates leading to tighter Lipschitz functions than before. This way and under the same computational effort, we derive: weaker sufficient convergence criteria (leading to a wider choice of initial points); tighter error bounds on the distances involved (i.e., fewer iterates are needed to obtain a desired predetermined accuracy), and a more precise information on the location of the solution. These advantages are considered major achievements in computational disciplines. The volume requires knowledge of linear algebra, numerical functional analysis and familiarity with contemporary computing programing. It can be used by researchers, practitioners, senior undergraduate and graduate students as a source material or as a required textbook in the classroom.

Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications. Volume IV

Product form

£235.79

Includes FREE delivery
RRP: £261.99 You save £26.20 (10%)
Usually despatched within 3 days
Hardback by Ioannis K. Argyros

1 in stock

Short Description:

The exponential growth of technology forces all disciplines to adjust accordingly, so they can meet the demands of a very... Read more

    Publisher: Nova Science Publishers Inc
    Publication Date: 06/05/2020
    ISBN13: 9781536174748, 978-1536174748
    ISBN10: 1536174742

    Number of Pages: 633

    Non Fiction , Mathematics & Science , Education

    Description

    The exponential growth of technology forces all disciplines to adjust accordingly, so they can meet the demands of a very dynamic world that heavily depends upon it. Therefore, mathematics cannot be an exception. In fact, mathematics should be the first to adjust and in fact it is. In this volume, which is a continuation of the previous three under the same title, we present state-of-the-art iterative methods for solving equations related to concrete problems from diverse areas such as applied mathematics, mathematical: biology, chemistry, economics, physics and also engineering to mention a few. Most of these methods are new and a few are old but still very popular. One major problem with iterative methods is that the convergence domain is small in general. We have introduced a technique that finds a smaller set than before containing the iterates leading to tighter Lipschitz functions than before. This way and under the same computational effort, we derive: weaker sufficient convergence criteria (leading to a wider choice of initial points); tighter error bounds on the distances involved (i.e., fewer iterates are needed to obtain a desired predetermined accuracy), and a more precise information on the location of the solution. These advantages are considered major achievements in computational disciplines. The volume requires knowledge of linear algebra, numerical functional analysis and familiarity with contemporary computing programing. It can be used by researchers, practitioners, senior undergraduate and graduate students as a source material or as a required textbook in the classroom.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account