Description

Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, and risk analysts will explore Python-based machine learning and deep learning models for assessing financial risk. You'll learn how to compare results from ML models with results obtained by traditional financial risk models. Author Abdullah Karasan helps you explore the theory behind financial risk assessment before diving into the differences between traditional and ML models. Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Revisit and improve market risk models (VaR and expected shortfall) using machine learning techniques Develop a credit risk based on a clustering technique for risk bucketing, then apply Bayesian estimation, Markov chain, and other ML models Capture different aspects of liquidity with a Gaussian mixture model Use machine learning models for fraud detection Identify corporate risk using the stock price crash metric Explore a synthetic data generation process to employ in financial risk

Machine Learning for Financial Risk Management with Python: Algorithms for Modeling Risk

Product form

£64.79

Includes FREE delivery
RRP: £71.99 You save £7.20 (10%)
Usually despatched within days
Paperback / softback by Abdullah Karasan

2 in stock

Short Description:

Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial... Read more

    Publisher: O'Reilly Media
    Publication Date: 31/12/2021
    ISBN13: 9781492085256, 978-1492085256
    ISBN10: 1492085251

    Number of Pages: 350

    Non Fiction , Computing

    Description

    Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, and risk analysts will explore Python-based machine learning and deep learning models for assessing financial risk. You'll learn how to compare results from ML models with results obtained by traditional financial risk models. Author Abdullah Karasan helps you explore the theory behind financial risk assessment before diving into the differences between traditional and ML models. Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Revisit and improve market risk models (VaR and expected shortfall) using machine learning techniques Develop a credit risk based on a clustering technique for risk bucketing, then apply Bayesian estimation, Markov chain, and other ML models Capture different aspects of liquidity with a Gaussian mixture model Use machine learning models for fraud detection Identify corporate risk using the stock price crash metric Explore a synthetic data generation process to employ in financial risk

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account