Description

MACHINE LEARNING FOR BUSINESS ANALYTICS

Machine learning —also known as data mining or data analytics— is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

This is the second R edition of Machine Learning for Business Analytics. This edition also includes:

  • A new co-author, Peter Gedeck, who brings over 20 years of experience in machine learning using R
  • An expanded chapter focused on discussion of deep learning techniques
  • A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
  • A new chapter on responsible data science
  • Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
  • A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques
  • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
  • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R

Product form

£107.00

Includes FREE delivery
Usually despatched within 5 days
Hardback by Galit Shmueli , Peter C. Bruce

1 in stock

Short Description:

MACHINE LEARNING FOR BUSINESS ANALYTICS Machine learning —also known as data mining or data analytics— is a fundamental part of... Read more

    Publisher: John Wiley & Sons Inc
    Publication Date: 08/02/2023
    ISBN13: 9781119835172, 978-1119835172
    ISBN10: 1119835178

    Number of Pages: 688

    Non Fiction , Mathematics & Science , Education

    Description

    MACHINE LEARNING FOR BUSINESS ANALYTICS

    Machine learning —also known as data mining or data analytics— is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.

    Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

    This is the second R edition of Machine Learning for Business Analytics. This edition also includes:

    • A new co-author, Peter Gedeck, who brings over 20 years of experience in machine learning using R
    • An expanded chapter focused on discussion of deep learning techniques
    • A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
    • A new chapter on responsible data science
    • Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
    • A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques
    • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
    • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

    This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account