Description

Book Synopsis
This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications.There are 434 items in the bibliography.The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.).

Table of Contents
Random Systems with Covariance Inequalities; Moment and Maximal Inequalities; Central Limit Theorem; Almost Sure Convergence; Invariance Principles; Law of the Iterated Logarithm; Statistical Applications; Integral Functionals.

Limit Theorems For Associated Random Fields And

Product form

£134.10

Includes FREE delivery

RRP £149.00 – you save £14.90 (10%)

Order before 4pm tomorrow for delivery by Mon 5 Jan 2026.

A Hardback by Alexander Bulinski, Alexey Shashkin

Out of stock


    View other formats and editions of Limit Theorems For Associated Random Fields And by Alexander Bulinski

    Publisher: World Scientific Publishing Co Pte Ltd
    Publication Date: 06/09/2007
    ISBN13: 9789812709400, 978-9812709400
    ISBN10: 9812709401
    Also in:
    Stochastics

    Description

    Book Synopsis
    This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications.There are 434 items in the bibliography.The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.).

    Table of Contents
    Random Systems with Covariance Inequalities; Moment and Maximal Inequalities; Central Limit Theorem; Almost Sure Convergence; Invariance Principles; Law of the Iterated Logarithm; Statistical Applications; Integral Functionals.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account