Description

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications.

The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods.

Key Features:

  • Brings together the perspectives of researchers in areas of inverse problems and data assimilation.
  • Assesses the current state-of-the-art and identify needs and opportunities for future research.
  • Focuses on the computational methods used to analyze and simulate inverse problems.
  • Written by leading experts of inverse problems and uncertainty quantification.

Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Large-Scale Inverse Problems and Quantification of Uncertainty

Product form

£111.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Lorenz Biegler , George Biros

1 in stock

Short Description:

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist... Read more

    Publisher: John Wiley & Sons Inc
    Publication Date: 05/11/2010
    ISBN13: 9780470697436, 978-0470697436
    ISBN10: 0470697431

    Number of Pages: 400

    Non Fiction , Mathematics & Science , Education

    Description

    This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications.

    The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods.

    Key Features:

    • Brings together the perspectives of researchers in areas of inverse problems and data assimilation.
    • Assesses the current state-of-the-art and identify needs and opportunities for future research.
    • Focuses on the computational methods used to analyze and simulate inverse problems.
    • Written by leading experts of inverse problems and uncertainty quantification.

    Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account