Description

Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support workflows from on-premises to cloud providers including Google, Amazon, and Microsoft. Dive into Kubeflow architecture and learn best practices for using the platform Understand the process of planning your Kubeflow deployment Install Kubeflow on an existing on-premise Kubernetes cluster Deploy Kubeflow on Google Cloud Platform, AWS, and Azure Use KFServing to develop and deploy machine learning models

Kubeflow Operations Guide: Managing On-Premises, Cloud, and Hybrid Deployment

Product form

£47.69

Includes FREE delivery
RRP: £52.99 You save £5.30 (10%)
Usually despatched within 5 days
Paperback / softback by Josh Patterson , Michael Katzenellenbogen

1 in stock

Short Description:

Building models is a small part of the story when it comes to deploying machine learning applications. The entire process... Read more

    Publisher: O'Reilly Media
    Publication Date: 31/12/2020
    ISBN13: 9781492053279, 978-1492053279
    ISBN10: 1492053279

    Number of Pages: 303

    Non Fiction , Computing

    Description

    Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support workflows from on-premises to cloud providers including Google, Amazon, and Microsoft. Dive into Kubeflow architecture and learn best practices for using the platform Understand the process of planning your Kubeflow deployment Install Kubeflow on an existing on-premise Kubernetes cluster Deploy Kubeflow on Google Cloud Platform, AWS, and Azure Use KFServing to develop and deploy machine learning models

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account