Description

This book was conceived from the realization that there was a need to update recent work on invariants in a single volume providing a useful set of references and pointers to related work. Since the publication in 1992 of J L Mundy and A Zisserman's Geometric Invariance in Computer Vision, the subject has been evolving rapidly. New approaches to invariants have been proposed and novel ways of defining and applying invariants to practical problem solving are testimony to the fundamental importance of the study of invariants to machine vision. This book represents a snapshot of current research around the world.A version of this collection of papers has appeared in the International Journal of Pattern Recognition and Artificial Intelligence (December 1999). The papers in this book are extended versions of the original material published in the journal. They are organized into two categories: foundations and applications. Foundation papers present new ways of defining or analyzing invariants, and application papers present novel ways in which known invariant theory is extended and effectively applied to real-world problems in interesting and difficult contexts. Each category contains roughly half of the papers, but there is considerable overlap. All papers carry an element of novelty and generalization that will be useful to theoreticians and practitioners alike. It is hoped that this volume will be not only useful but also inspirational to researchers in image processing, pattern recognition and computer vision at large.

Invariants For Pattern Recognition And Classification

Product form

£91.00

Includes FREE delivery
Usually despatched within 3 days
Hardback by Marcos A Rodrigues

1 in stock

Short Description:

This book was conceived from the realization that there was a need to update recent work on invariants in a... Read more

    Publisher: World Scientific Publishing Co Pte Ltd
    Publication Date: 02/01/2001
    ISBN13: 9789810242787, 978-9810242787
    ISBN10: 9810242786

    Number of Pages: 248

    Non Fiction , Computing

    Description

    This book was conceived from the realization that there was a need to update recent work on invariants in a single volume providing a useful set of references and pointers to related work. Since the publication in 1992 of J L Mundy and A Zisserman's Geometric Invariance in Computer Vision, the subject has been evolving rapidly. New approaches to invariants have been proposed and novel ways of defining and applying invariants to practical problem solving are testimony to the fundamental importance of the study of invariants to machine vision. This book represents a snapshot of current research around the world.A version of this collection of papers has appeared in the International Journal of Pattern Recognition and Artificial Intelligence (December 1999). The papers in this book are extended versions of the original material published in the journal. They are organized into two categories: foundations and applications. Foundation papers present new ways of defining or analyzing invariants, and application papers present novel ways in which known invariant theory is extended and effectively applied to real-world problems in interesting and difficult contexts. Each category contains roughly half of the papers, but there is considerable overlap. All papers carry an element of novelty and generalization that will be useful to theoreticians and practitioners alike. It is hoped that this volume will be not only useful but also inspirational to researchers in image processing, pattern recognition and computer vision at large.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account