Description

The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more and more paradoxical differences between the structures of the two theories.

The authors of this Research Note were driven by the quest to construct a theory in several complex variables that has the same structure as the one-variable theory. That is, they sought a reproducing kernel for the whole class that is universal and from same class. Integral Theorems for Functions and Differential Forms in Cm documents their success. Their highly original approach allowed them to obtain new results and refine some well-known results from the classical theory of several complex variables. The 'hyperholomorphic" theory they developed proved to be a kind of direct sum of function theories for two Dirac-type operators of Clifford analysis considered in the same domain.

In addition to new results and methods, this work presents a first-look at a brand new setting, based upon the natural language of differential forms, for complex analysis. Integral Theorems for Functions and Differential Forms in Cm reveals a deep link between the fields of several complex variables theory and Clifford analysis. It will have a strong influence on researchers in both areas, and undoubtedly will change the general viewpoint on the methods and ideas of several complex variables theory.

Integral Theorems for Functions and Differential Forms in C(m)

Product form

£170.00

Includes FREE delivery
Usually despatched within 4 days
Paperback / softback by Reynaldo Rocha-Chavez , Michael Shapiro

1 in stock

Short Description:

The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable... Read more

    Publisher: Taylor & Francis Inc
    Publication Date: 03/08/2001
    ISBN13: 9781584882466, 978-1584882466
    ISBN10: 1584882468

    Number of Pages: 214

    Non Fiction , Mathematics & Science , Education

    Description

    The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more and more paradoxical differences between the structures of the two theories.

    The authors of this Research Note were driven by the quest to construct a theory in several complex variables that has the same structure as the one-variable theory. That is, they sought a reproducing kernel for the whole class that is universal and from same class. Integral Theorems for Functions and Differential Forms in Cm documents their success. Their highly original approach allowed them to obtain new results and refine some well-known results from the classical theory of several complex variables. The 'hyperholomorphic" theory they developed proved to be a kind of direct sum of function theories for two Dirac-type operators of Clifford analysis considered in the same domain.

    In addition to new results and methods, this work presents a first-look at a brand new setting, based upon the natural language of differential forms, for complex analysis. Integral Theorems for Functions and Differential Forms in Cm reveals a deep link between the fields of several complex variables theory and Clifford analysis. It will have a strong influence on researchers in both areas, and undoubtedly will change the general viewpoint on the methods and ideas of several complex variables theory.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account