Description

This textbook is an introduction to microwave engineering. The scope of this book extends from topics for a first course in electrical engineering, in which impedances are analyzed using complex numbers, through the introduction of transmission lines that are analyzed using the Smith Chart, and on to graduate level subjects, such as equivalent circuits for obstacles in hollow waveguides, analyzed using Green’s Functions. This book is a virtual encyclopedia of circuit design methods.

Despite the complexity, topics are presented in a conversational manner for ease of comprehension. The book is not only an excellent text at the undergraduate and graduate levels, but is as well a detailed reference for the practicing engineer.

Consider how well informed an engineer will be who has become familiar with these topics as treated in High Frequency Techniques: (in order of presentation)

Brief history of wireless (radio) and the Morse code
U.S. Radio Frequency Allocations
Introduction to vectors
AC analysis and why complex numbers and impedance are used
Circuit and antenna reciprocity
Decibel measure
Maximum power transfer
Skin effect
Computer simulation and optimization of networks
LC matching of one impedance to another
Coupled Resonators
Uniform transmission lines for propagation
VSWR, return Loss and mismatch error
The Telegrapher Equations (derived)
Phase and Group Velocities
The Impedance Transformation Equation for lines (derived)
Fano's and Bode's matching limits
The Smith Chart (derived)
Slotted Line impedance measurement
Constant Q circles on the Smith Chart
Approximating a transmission line with lumped L's and C's
ABCD, Z, Y and Scattering matrix analysis methods for circuits
Statistical Design and Yield Analysis of products
Electromagnetic Fields
Gauss's Law
Vector Dot Product, Divergence and Curl
Static Potential and Gradient
Ampere's Law and Vector Curl
Maxwell's Equations and their visualization
The Laplacian
Rectangular, cylindrical and spherical coordinates
Skin Effect
The Wave Equation
The Helmholtz Equations
Plane Propagating Waves
Rayleigh Fading
Circular (elliptic) Polarization
Poynting's Theorem
EM fields on Transmission Lines
Calculating the impedance of coaxial lines
Calculating and visualizing the fields in waveguides
Propagation constants and waveguide modes
The Taylor Series Expansion
Fourier Series and Green's Functions
Higher order modes and how to suppress them
Vector Potential and Retarded Potentials
Wire and aperture antennas
Radio propagation and path loss
Electromagnetic computer simulation of structures
Directional couplers
The Rat Race Hybrid
Even and Odd Mode Analysis applied to the backward wave coupler
Network analyzer impedance and transmission measurements
Two-port Scattering Parameters (s matrix)
The Hybrid Ring coupler
The Wilkinson power divider
Filter design: Butterworth, Maximally flat & Tchebyscheff responses
Filter Q
Diplexer, Bandpass and Elliptic filters
Richard's Transformation & Kuroda’s Identities
Mumford's transmission line stub filters
Transistor Amplifier Design: gain, biasing, stability, and conjugate matching
Noise in systems, noise figure of an amplifier cascade
Amplifier non-linearity, and spurious free dynamic range
Statistical Design and Yield Analysis

High Frequency Techniques: An Introduction to RF and Microwave Design and Computer Simulation

Product form

£145.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Joseph F. White

1 in stock

Short Description:

This textbook is an introduction to microwave engineering. The scope of this book extends from topics for a first course... Read more

    Publisher: John Wiley & Sons Inc
    Publication Date: 29/01/2004
    ISBN13: 9780471455912, 978-0471455912
    ISBN10: 0471455911

    Number of Pages: 524

    Non Fiction , Technology, Engineering & Agriculture , Education

    Description

    This textbook is an introduction to microwave engineering. The scope of this book extends from topics for a first course in electrical engineering, in which impedances are analyzed using complex numbers, through the introduction of transmission lines that are analyzed using the Smith Chart, and on to graduate level subjects, such as equivalent circuits for obstacles in hollow waveguides, analyzed using Green’s Functions. This book is a virtual encyclopedia of circuit design methods.

    Despite the complexity, topics are presented in a conversational manner for ease of comprehension. The book is not only an excellent text at the undergraduate and graduate levels, but is as well a detailed reference for the practicing engineer.

    Consider how well informed an engineer will be who has become familiar with these topics as treated in High Frequency Techniques: (in order of presentation)

    Brief history of wireless (radio) and the Morse code
    U.S. Radio Frequency Allocations
    Introduction to vectors
    AC analysis and why complex numbers and impedance are used
    Circuit and antenna reciprocity
    Decibel measure
    Maximum power transfer
    Skin effect
    Computer simulation and optimization of networks
    LC matching of one impedance to another
    Coupled Resonators
    Uniform transmission lines for propagation
    VSWR, return Loss and mismatch error
    The Telegrapher Equations (derived)
    Phase and Group Velocities
    The Impedance Transformation Equation for lines (derived)
    Fano's and Bode's matching limits
    The Smith Chart (derived)
    Slotted Line impedance measurement
    Constant Q circles on the Smith Chart
    Approximating a transmission line with lumped L's and C's
    ABCD, Z, Y and Scattering matrix analysis methods for circuits
    Statistical Design and Yield Analysis of products
    Electromagnetic Fields
    Gauss's Law
    Vector Dot Product, Divergence and Curl
    Static Potential and Gradient
    Ampere's Law and Vector Curl
    Maxwell's Equations and their visualization
    The Laplacian
    Rectangular, cylindrical and spherical coordinates
    Skin Effect
    The Wave Equation
    The Helmholtz Equations
    Plane Propagating Waves
    Rayleigh Fading
    Circular (elliptic) Polarization
    Poynting's Theorem
    EM fields on Transmission Lines
    Calculating the impedance of coaxial lines
    Calculating and visualizing the fields in waveguides
    Propagation constants and waveguide modes
    The Taylor Series Expansion
    Fourier Series and Green's Functions
    Higher order modes and how to suppress them
    Vector Potential and Retarded Potentials
    Wire and aperture antennas
    Radio propagation and path loss
    Electromagnetic computer simulation of structures
    Directional couplers
    The Rat Race Hybrid
    Even and Odd Mode Analysis applied to the backward wave coupler
    Network analyzer impedance and transmission measurements
    Two-port Scattering Parameters (s matrix)
    The Hybrid Ring coupler
    The Wilkinson power divider
    Filter design: Butterworth, Maximally flat & Tchebyscheff responses
    Filter Q
    Diplexer, Bandpass and Elliptic filters
    Richard's Transformation & Kuroda’s Identities
    Mumford's transmission line stub filters
    Transistor Amplifier Design: gain, biasing, stability, and conjugate matching
    Noise in systems, noise figure of an amplifier cascade
    Amplifier non-linearity, and spurious free dynamic range
    Statistical Design and Yield Analysis

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account