Description

The definitive one-stop resource on structural equation modeling (SEM) from leading methodologists is now in a significantly revised second edition. Twenty-three new chapters cover model selection, bifactor models, item parceling, multitrait–multimethod models, exploratory SEM, mixture models, SEM with small samples, and more. The book moves from fundamental SEM topics (causality, visualization, assumptions, estimation, model fit, and managing missing data); to major model types focused on unobserved causes of covariance between observed variables; to more complex, specialized applications. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with the reader's data. The expanded companion website presents full data sets, code, and output for many of the chapters, as well as bonus selected chapters from the prior edition.

New to This Edition
*Chapters on additional topics not mentioned above: SEM-based meta-analysis, dynamic SEM, machine-learning approaches, and more.
*Chapters include computer code associated with example analyses (in Mplus and/or the R package lavaan), along with written descriptions of results.
*60% new material reflects a decade's worth of developments in the mechanics and application of SEM.
*Many new contributors and fully rewritten chapters.

Handbook of Structural Equation Modeling, Second Edition

Product form

£105.00

Includes FREE delivery
Usually despatched within days
Hardback by Rick H. Hoyle

2 in stock

Short Description:

The definitive one-stop resource on structural equation modeling (SEM) from leading methodologists is now in a significantly revised second edition.... Read more

    Publisher: Guilford Publications
    Publication Date: 31/03/2023
    ISBN13: 9781462544646, 978-1462544646
    ISBN10: 1462544649

    Number of Pages: 785

    Non Fiction , Mathematics & Science , Education

    Description

    The definitive one-stop resource on structural equation modeling (SEM) from leading methodologists is now in a significantly revised second edition. Twenty-three new chapters cover model selection, bifactor models, item parceling, multitrait–multimethod models, exploratory SEM, mixture models, SEM with small samples, and more. The book moves from fundamental SEM topics (causality, visualization, assumptions, estimation, model fit, and managing missing data); to major model types focused on unobserved causes of covariance between observed variables; to more complex, specialized applications. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with the reader's data. The expanded companion website presents full data sets, code, and output for many of the chapters, as well as bonus selected chapters from the prior edition.

    New to This Edition
    *Chapters on additional topics not mentioned above: SEM-based meta-analysis, dynamic SEM, machine-learning approaches, and more.
    *Chapters include computer code associated with example analyses (in Mplus and/or the R package lavaan), along with written descriptions of results.
    *60% new material reflects a decade's worth of developments in the mechanics and application of SEM.
    *Many new contributors and fully rewritten chapters.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account