Description

The book deals with some questions related to the boundary problem in complex geometry and CR geometry. After a brief introduction summarizing the main results on the extension of CR functions, it is shown in chapters 2 and 3 that, employing the classical Harvey-Lawson theorem and under suitable conditions, the boundary problem for non-compact maximally complex real submanifolds of Cn, n=3 is solvable.

In chapter 4, the regularity of Levi flat hypersurfaces Cn (n=3) with assigned boundaries is studied in the graph case, in relation to the existence theorem proved by Dolbeault, Tomassini and Zaitsev.

Finally, in the last two chapters the structure properties of non-compact Levi-flat submanifolds of Cn are discussed; in particular, using the theory of the analytic multifunctions, a Liouville theorem for Levi flat submanifolds of Cn is proved.

Geometric properties of non-compact CR manifolds

Product form

£16.99

Includes FREE delivery
Usually despatched within days
Paperback / softback by Giuseppe Sala

1 in stock

Short Description:

The book deals with some questions related to the boundary problem in complex geometry and CR geometry. After a brief... Read more

    Publisher: Birkhauser Verlag AG
    Publication Date: 28/04/2010
    ISBN13: 9788876423482, 978-8876423482
    ISBN10: 8876423486

    Number of Pages: 150

    Non Fiction , Mathematics & Science , Education

    Description

    The book deals with some questions related to the boundary problem in complex geometry and CR geometry. After a brief introduction summarizing the main results on the extension of CR functions, it is shown in chapters 2 and 3 that, employing the classical Harvey-Lawson theorem and under suitable conditions, the boundary problem for non-compact maximally complex real submanifolds of Cn, n=3 is solvable.

    In chapter 4, the regularity of Levi flat hypersurfaces Cn (n=3) with assigned boundaries is studied in the graph case, in relation to the existence theorem proved by Dolbeault, Tomassini and Zaitsev.

    Finally, in the last two chapters the structure properties of non-compact Levi-flat submanifolds of Cn are discussed; in particular, using the theory of the analytic multifunctions, a Liouville theorem for Levi flat submanifolds of Cn is proved.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account