Description

Presenting new results along with research spanning five decades, Fractional Cauchy Transforms provides a full treatment of the topic, from its roots in classical complex analysis to its current state. Self-contained, it includes introductory material and classical results, such as those associated with complex-valued measures on the unit circle, that form the basis of the developments that follow. The authors focus on concrete analytic questions, with functional analysis providing the general framework.

After examining basic properties, the authors study integral means and relationships between the fractional Cauchy transforms and the Hardy and Dirichlet spaces. They then study radial and nontangential limits, followed by chapters devoted to multipliers, composition operators, and univalent functions. The final chapter gives an analytic characterization of the family of Cauchy transforms when considered as functions defined in the complement of the unit circle.

About the authors:

Rita A. Hibschweiler is a Professor in the Department of Mathematics and Statistics at the University of New Hampshire, Durham, USA.

Thomas H. MacGregor is Professor Emeritus, State University of New York at Albany and a Research Associate at Bowdoin College, Brunswick, Maine, USA.\

Fractional Cauchy Transforms

Product form

£130.00

Includes FREE delivery
Usually despatched within 4 days
Hardback by Rita A. Hibschweiler

1 in stock

Short Description:

Presenting new results along with research spanning five decades, Fractional Cauchy Transforms provides a full treatment of the topic, from... Read more

    Publisher: Taylor & Francis Inc
    Publication Date: 01/11/2005
    ISBN13: 9781584885603, 978-1584885603
    ISBN10: 1584885602

    Number of Pages: 268

    Non Fiction , Mathematics & Science , Education

    Description

    Presenting new results along with research spanning five decades, Fractional Cauchy Transforms provides a full treatment of the topic, from its roots in classical complex analysis to its current state. Self-contained, it includes introductory material and classical results, such as those associated with complex-valued measures on the unit circle, that form the basis of the developments that follow. The authors focus on concrete analytic questions, with functional analysis providing the general framework.

    After examining basic properties, the authors study integral means and relationships between the fractional Cauchy transforms and the Hardy and Dirichlet spaces. They then study radial and nontangential limits, followed by chapters devoted to multipliers, composition operators, and univalent functions. The final chapter gives an analytic characterization of the family of Cauchy transforms when considered as functions defined in the complement of the unit circle.

    About the authors:

    Rita A. Hibschweiler is a Professor in the Department of Mathematics and Statistics at the University of New Hampshire, Durham, USA.

    Thomas H. MacGregor is Professor Emeritus, State University of New York at Albany and a Research Associate at Bowdoin College, Brunswick, Maine, USA.\

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account