Description

In this volume, an abstract theory of 'forms' is developed, thus providing a conceptually satisfying framework for the classification of forms of Fermat equations. The classical results on diagonal forms are extended to the broader class of all forms of Fermat varieties.The main topic is the study of forms of the Fermat equation over an arbitrary field K. Using Galois descent, all such forms are classified; particularly, a complete and explicit classification of all cubic binary equations is given. If K is a finite field containing the d-th roots of unity, the Galois representation on l-adic cohomology (and so in particular the zeta function) of the hypersurface associated with an arbitrary form of the Fermat equation of degree d is computed.

Forms Of Fermat Equations And Their Zeta Functions

Product form

£99.00

Includes FREE delivery
Usually despatched within 3 days
Hardback by Lars Brunjes

1 in stock

Short Description:

In this volume, an abstract theory of 'forms' is developed, thus providing a conceptually satisfying framework for the classification of... Read more

    Publisher: World Scientific Publishing Co Pte Ltd
    Publication Date: 19/10/2004
    ISBN13: 9789812560391, 978-9812560391
    ISBN10: 9812560394

    Number of Pages: 248

    Non Fiction , Mathematics & Science , Education

    Description

    In this volume, an abstract theory of 'forms' is developed, thus providing a conceptually satisfying framework for the classification of forms of Fermat equations. The classical results on diagonal forms are extended to the broader class of all forms of Fermat varieties.The main topic is the study of forms of the Fermat equation over an arbitrary field K. Using Galois descent, all such forms are classified; particularly, a complete and explicit classification of all cubic binary equations is given. If K is a finite field containing the d-th roots of unity, the Galois representation on l-adic cohomology (and so in particular the zeta function) of the hypersurface associated with an arbitrary form of the Fermat equation of degree d is computed.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account