Description
With the growth of high-speed telecommunications and wireless technology, it is becoming increasingly important for engineers to understand radio frequency (RF) applications and their sensitivity to electrostatic discharge (ESD) phenomena. This enables the development of ESD design methods for RF technology, leading to increased protection against electrical overstress (EOS) and ESD.
ESD: RF Technology and Circuits:
- Presents methods for co-synthesizisng ESD networks for RF applications to achieve improved performance and ESD protection of semiconductor chips;
- discusses RF ESD design methods of capacitance load transformation, matching network co-synthesis, capacitance shunts, inductive shunts, impedance isolation, load cancellation methods, distributed loads, emitter degeneration, buffering and ballasting;
- examines ESD protection and design of active and passive elements in RF complementary metal-oxide-semiconductor (CMOS), RF laterally-diffused metal oxide semiconductor (LDMOS), RF BiCMOS Silicon Germanium (SiGe), RF BiCMOS Silicon Germanium Carbon (SiGeC), and Gallim Arsenide technology;
- gives information on RF ESD testing methodologies, RF degradation effects, and failure mechanisms for devices, circuits and systems;
- highlights RF ESD mixed-signal design integration of digital, analog and RF circuitry;
- sets out examples of RF ESD design computer aided design methodologies;
- covers state-of-the-art RF ESD input circuits, as well as voltage-triggered to RC-triggered ESD power clamps networks in RF technologies, as well as off-chip protection concepts.
Following the authors series of books on ESD, this book will be a thorough overview of ESD in RF technology for RF semiconductor chip and ESD engineers. Device and circuit engineers working in the RF domain, and quality, reliability and failure analysis engineers will also find it a valuable reference in the rapidly growing are of RF ESD design. In addition, it will appeal to graduate students in RF microwave technology and RF circuit design.