Description
Brings together in one place the fundamental theory and models, and the practical aspects of submicron particle engineering
This book attempts to resolve the tricky aspects of engineering submicron particles by discussing the fundamental theories of frequently used research tools—both theoretical and experimental. The first part covers the Fundamental Models and includes sections on nucleation, growth, inter-molecular and inter-particle forces, colloidal stability, and kinetics. The second part examines the Modelling of a Suspension and features chapters on fundamental concepts of particulate systems, writing the number balance, modelling systems with particle breakage and aggregation, and Monte Carlo simulation. The book also offers plenty of diagrams, software, examples, brief experimental demonstrations, and exercises with answers.
Engineering of Submicron Particles: Fundamental Concepts and Models offers a lengthy discussion of classical nucleation theory, and introduces other nucleation mechanisms like organizer mechanisms. It also looks at older growth models like diffusion controlled or surface nucleation controlled growth, along with new generation models like connected net analysis. Aggregation models and inter-particle potentials are touched upon in a prelude on intermolecular and surface forces. The book also provides analytical and numerical solutions of population balance models so readers can solve basic population balance equations independently.
- Presents the fundamental theory, practical aspects, and models of submicron particle engineering
- Teaches readers to write number balances for their own system of interest
- Provides software with open code for solution of population balance model through discretization
- Filled with diagrams, examples, demonstrations, and exercises
Engineering of Submicron Particles: Fundamental Concepts and Models will appeal to researchers in chemical engineering, physics, chemistry, engineering, and mathematics concerned with particulate systems. It is also a good text for advanced students taking particle technology courses.