Description

Electronic Structure Crystallography and Functional Motifs of Materials

Detailed resource on the method of electronic structure crystallography for revealing the experimental electronic structure and structure-property relationships of functional materials

Electronic Structure Crystallography and Functional Motifs of Materials describes electronic structure crystallography and functional motifs of materials, two of the most challenging topics to realize the rational design of high-performance functional materials, emphasizing the physical properties and structure-property relationships of functional materials using nonlinear optical materials as examples.

The text clearly illustrates how to extract experimental electronic structure information and relevant physicochemical properties of materials based on the theories and methods in X-ray crystallography and quantum chemistry. Practical skills of charge density studies using experimental X-ray sources are also covered, which are particularly important for the future popularization and development of electron structure crystallography.

This book also introduces the related theories and refinement techniques involved in using scattering methods (mainly X-ray single-crystal diffraction, as well as polarized neutron scattering and Compton scattering) to determine experimental electronic structures, including the experimental electron density, experimental electron wavefunction, and experimental electron density matrix of crystalline materials.

Electronic Structure Crystallography and Functional Motifs of Materials includes information on:

  • Basic framework and assumptions of the first-principle calculations, density matrix and density function, and Hartree-Fock (HF) and Kohn-Sham (KS) methods
  • Analysis of topological atoms in molecules, chemical interaction analysis, coarse graining and energy partition of the density matrix, and restricted space partition
  • Principles of electronic structure measurement, including thermal vibration analysis, scattering experiments, and refinement algorithm for experimental electronic structure
  • Independent atom model, multipole model, X-ray constrained wavefunction model, and other electron density models

Electronic Structure Crystallography and Functional Motifs of Materials is an ideal textbook or reference book for graduate students and researchers in chemistry, physics, and material sciences for studying the structures and properties of functional crystalline materials.

Electronic Structure Crystallography and Functional Motifs of Materials

Product form

£115.00

Includes FREE delivery
Usually despatched within 3 days
Hardback by Guo-Cong Guo , Xiao-Ming Jiang

1 in stock

Short Description:

Electronic Structure Crystallography and Functional Motifs of Materials Detailed resource on the method of electronic structure crystallography for revealing the... Read more

    Publisher: Wiley-VCH Verlag GmbH
    Publication Date: 14/02/2024
    ISBN13: 9783527352203, 978-3527352203
    ISBN10: 3527352201

    Number of Pages: 240

    Non Fiction , Mathematics & Science , Education

    Description

    Electronic Structure Crystallography and Functional Motifs of Materials

    Detailed resource on the method of electronic structure crystallography for revealing the experimental electronic structure and structure-property relationships of functional materials

    Electronic Structure Crystallography and Functional Motifs of Materials describes electronic structure crystallography and functional motifs of materials, two of the most challenging topics to realize the rational design of high-performance functional materials, emphasizing the physical properties and structure-property relationships of functional materials using nonlinear optical materials as examples.

    The text clearly illustrates how to extract experimental electronic structure information and relevant physicochemical properties of materials based on the theories and methods in X-ray crystallography and quantum chemistry. Practical skills of charge density studies using experimental X-ray sources are also covered, which are particularly important for the future popularization and development of electron structure crystallography.

    This book also introduces the related theories and refinement techniques involved in using scattering methods (mainly X-ray single-crystal diffraction, as well as polarized neutron scattering and Compton scattering) to determine experimental electronic structures, including the experimental electron density, experimental electron wavefunction, and experimental electron density matrix of crystalline materials.

    Electronic Structure Crystallography and Functional Motifs of Materials includes information on:

    • Basic framework and assumptions of the first-principle calculations, density matrix and density function, and Hartree-Fock (HF) and Kohn-Sham (KS) methods
    • Analysis of topological atoms in molecules, chemical interaction analysis, coarse graining and energy partition of the density matrix, and restricted space partition
    • Principles of electronic structure measurement, including thermal vibration analysis, scattering experiments, and refinement algorithm for experimental electronic structure
    • Independent atom model, multipole model, X-ray constrained wavefunction model, and other electron density models

    Electronic Structure Crystallography and Functional Motifs of Materials is an ideal textbook or reference book for graduate students and researchers in chemistry, physics, and material sciences for studying the structures and properties of functional crystalline materials.

    Recently viewed products

    © 2024 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account