Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 168.

The distribution of H2O in the Earth is under debate. Although liquid water covers 70% of the surface, the oceans represent only about 0.025% of the planet's mass-far less water than thought to have been present during Earth's formation. If our planet is "missing" most of its original water, could it reside in the mantle? Can we detect it seismically?

Recognition of the capacity of some deep-mantle minerals to absorb water has propelled an interdisciplinary field of research addressing these two questions, and more. Earth's Deep Water Cycle advances the field with experimental, modeling, and seismic studies that focus on the physical characteristics of "hydrated" minerals, the potentially H2O-rich transition zone (410-660 km depth), and our detection abilities.

Integrated perspectives from four fields of research are featured:

  • Mineral physics and geochemistry
  • Seismology and electrical conductivity
  • Properties of deep hydrous mantle
  • Global models and consequences of a deep-Earth water cycle

From experimental synthesis and physical properties measurements to geophysical observations and geodynamic modeling, we are beginning to understand what parameters and data are needed to detect or refute the possibility of water in the deep Earth.

Earth's Deep Water Cycle

Product form

£79.89

Includes FREE delivery
Usually despatched within 12 days
Hardback by Steven D. Jacobsen , Suzan van der Lee

2 in stock

Short Description:

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 168.The distribution of H2O in the... Read more

    Publisher: John Wiley & Sons Inc
    Publication Date: 01/01/2006
    ISBN13: 9780875904337, 978-0875904337
    ISBN10: 0875904335

    Number of Pages: 313

    Non Fiction , Earth Sciences, Geography & Environment , Education

    Description

    Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 168.

    The distribution of H2O in the Earth is under debate. Although liquid water covers 70% of the surface, the oceans represent only about 0.025% of the planet's mass-far less water than thought to have been present during Earth's formation. If our planet is "missing" most of its original water, could it reside in the mantle? Can we detect it seismically?

    Recognition of the capacity of some deep-mantle minerals to absorb water has propelled an interdisciplinary field of research addressing these two questions, and more. Earth's Deep Water Cycle advances the field with experimental, modeling, and seismic studies that focus on the physical characteristics of "hydrated" minerals, the potentially H2O-rich transition zone (410-660 km depth), and our detection abilities.

    Integrated perspectives from four fields of research are featured:

    • Mineral physics and geochemistry
    • Seismology and electrical conductivity
    • Properties of deep hydrous mantle
    • Global models and consequences of a deep-Earth water cycle

    From experimental synthesis and physical properties measurements to geophysical observations and geodynamic modeling, we are beginning to understand what parameters and data are needed to detect or refute the possibility of water in the deep Earth.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account