Description

The discrete vision of mechanics is based on the founding ideas of Galileo and the principles of relativity and equivalence, which postulate the equality between gravitational mass and inertial mass. To these principles are added the Hodge–Helmholtz decomposition, the principle of accumulation of constraints and the hypothesis of the duality of physical actions.

These principles make it possible to establish the equation of motion based on the conservation of acceleration considered as an absolute quantity in a local frame of reference, in the form of a sum of the gradient of the scalar potential and the curl of the vector potential. These potentials, which represent the constraints of compression and rotation, are updated from the discrete operators.

Discrete Mechanics: Concepts and Applications shows that this equation of discrete motion is representative of the compressible or incompressible flows of viscous or perfect fluids, the state of stress in an elastic solid or complex fluid and the propagation of nonlinear waves.

Discrete Mechanics: Concepts and Applications

Product form

£138.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Jean-Paul Caltagirone

1 in stock

Short Description:

The discrete vision of mechanics is based on the founding ideas of Galileo and the principles of relativity and equivalence,... Read more

    Publisher: ISTE Ltd and John Wiley & Sons Inc
    Publication Date: 19/02/2019
    ISBN13: 9781786302830, 978-1786302830
    ISBN10: 1786302837

    Number of Pages: 336

    Non Fiction , Technology, Engineering & Agriculture , Education

    Description

    The discrete vision of mechanics is based on the founding ideas of Galileo and the principles of relativity and equivalence, which postulate the equality between gravitational mass and inertial mass. To these principles are added the Hodge–Helmholtz decomposition, the principle of accumulation of constraints and the hypothesis of the duality of physical actions.

    These principles make it possible to establish the equation of motion based on the conservation of acceleration considered as an absolute quantity in a local frame of reference, in the form of a sum of the gradient of the scalar potential and the curl of the vector potential. These potentials, which represent the constraints of compression and rotation, are updated from the discrete operators.

    Discrete Mechanics: Concepts and Applications shows that this equation of discrete motion is representative of the compressible or incompressible flows of viscous or perfect fluids, the state of stress in an elastic solid or complex fluid and the propagation of nonlinear waves.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account