Description

Battery materials: Bringing it all together for tomorrow's energy storage needs.- Atomistic Simulations of Battery Materials and Processes.- Ab Initio Interfacial Electrochemistry Applied to Understanding, Tuning and Designing Battery Chemistry.- Electrolyte-Electrode Interfaces: A Review of Computer Simulations.- Many-particle Na-ion dynamics in NaMPO4 olivine phosphates (M=Mn, Fe).- Crystal Structure Prediction for Battery Materials.- Nanoscale Modelling of Substitutional Disorder in Battery Materials.- Machine learning methods for the design of battery manufacturing processes.- Machine learning methods for the design of battery manufacturing processes.- Applications of Ab Initio Molecular Dynamics for Modeling Batteries.- Forming a Chemically-Guided Basis for Cathode Materials with Reduced Biological Impact using Combined Density Functional Theory and Thermodynamics Modeling.- Oxygen Redox in Battery Cathodes: A Brief Overview.- Theoretical Investigatio

Computational Design of Battery Materials

Product form

£159.99

Includes FREE delivery
Usually despatched within 5 days
Hardback by Dorian A. H. Hanaor

1 in stock

Short Description:

Battery materials: Bringing it all together for tomorrow's energy storage needs.- Atomistic Simulations of Battery Materials and Processes.- Ab Initio Interfacial... Read more

    Publisher: Springer
    Publication Date: 7/5/2024
    ISBN13: 9783031473029, 978-3031473029
    ISBN10: 3031473027

    Non Fiction , Technology, Engineering & Agriculture , Education

    Description

    Battery materials: Bringing it all together for tomorrow's energy storage needs.- Atomistic Simulations of Battery Materials and Processes.- Ab Initio Interfacial Electrochemistry Applied to Understanding, Tuning and Designing Battery Chemistry.- Electrolyte-Electrode Interfaces: A Review of Computer Simulations.- Many-particle Na-ion dynamics in NaMPO4 olivine phosphates (M=Mn, Fe).- Crystal Structure Prediction for Battery Materials.- Nanoscale Modelling of Substitutional Disorder in Battery Materials.- Machine learning methods for the design of battery manufacturing processes.- Machine learning methods for the design of battery manufacturing processes.- Applications of Ab Initio Molecular Dynamics for Modeling Batteries.- Forming a Chemically-Guided Basis for Cathode Materials with Reduced Biological Impact using Combined Density Functional Theory and Thermodynamics Modeling.- Oxygen Redox in Battery Cathodes: A Brief Overview.- Theoretical Investigatio

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account