Description

Computer-assisted translation (CAT) has always used translation memories, which require the translator to have a corpus of previous translations that the CAT software can use to generate bilingual lexicons. This can be problematic when the translator does not have such a corpus, for instance, when the text belongs to an emerging field. To solve this issue, CAT research has looked into the leveraging of comparable corpora, i.e. a set of texts, in two or more languages, which deal with the same topic but are not translations of one another.

This work had two primary objectives. The first is to assess the input of lexicons extracted from comparable corpora in the context of a specialized human translation task. The second objective is to identify bilingual-lexicon-extraction methods which best match the translators' needs, determining the current limits of these techniques and suggesting improvements. The author focuses, in particular, on the identification of fertile translations, the management of multiple morphological structures, and the ranking of candidate translations.

The experiments are carried out on two language pairs (English–French and English–German) and on specialized texts dealing with breast cancer. This research puts significant emphasis on applicability – methodological choices are guided by the needs of the final users. This book is organized in two parts: the first part presents the applicative and scientific context of the research, and the second part is given over to efforts to improve compositional translation.

The research work presented in this book received the PhD Thesis award 2014 from the French association for natural language processing (ATALA).

Comparable Corpora and Computer-assisted Translation

Product form

£138.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Estelle Maryline Delpech

1 in stock

Short Description:

Computer-assisted translation (CAT) has always used translation memories, which require the translator to have a corpus of previous translations that... Read more

    Publisher: ISTE Ltd and John Wiley & Sons Inc
    Publication Date: 04/07/2014
    ISBN13: 9781848216891, 978-1848216891
    ISBN10: 1848216890

    Number of Pages: 304

    Non Fiction , Dictionaries, Reference & Language

    Description

    Computer-assisted translation (CAT) has always used translation memories, which require the translator to have a corpus of previous translations that the CAT software can use to generate bilingual lexicons. This can be problematic when the translator does not have such a corpus, for instance, when the text belongs to an emerging field. To solve this issue, CAT research has looked into the leveraging of comparable corpora, i.e. a set of texts, in two or more languages, which deal with the same topic but are not translations of one another.

    This work had two primary objectives. The first is to assess the input of lexicons extracted from comparable corpora in the context of a specialized human translation task. The second objective is to identify bilingual-lexicon-extraction methods which best match the translators' needs, determining the current limits of these techniques and suggesting improvements. The author focuses, in particular, on the identification of fertile translations, the management of multiple morphological structures, and the ranking of candidate translations.

    The experiments are carried out on two language pairs (English–French and English–German) and on specialized texts dealing with breast cancer. This research puts significant emphasis on applicability – methodological choices are guided by the needs of the final users. This book is organized in two parts: the first part presents the applicative and scientific context of the research, and the second part is given over to efforts to improve compositional translation.

    The research work presented in this book received the PhD Thesis award 2014 from the French association for natural language processing (ATALA).

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account