Description

Because traditional ring theory places restrictive hypotheses on all submodules of a module, its results apply only to small classes of already well understood examples. Often, modules with infinite Goldie dimension have finite-type dimension, making them amenable to use with type dimension, but not Goldie dimension. By working with natural classes and type submodules (TS), Classes of Modules develops the foundations and tools for the next generation of ring and module theory. It shows how to achieve positive results by placing restrictive hypotheses on a small subset of the complement submodules, Furthermore, it explains the existence of various direct sum decompositions merely as special cases of type direct sum decompositions.

Carefully developing the foundations of the subject, the authors begin by providing background on the terminology and introducing the different module classes. The modules classes consist of torsion, torsion-free, s[M], natural, and prenatural. They expand the discussion by exploring advanced theorems and new classes, such as new chain conditions, TS-module theory, and the lattice of prenatural classes of right R-modules, which contains many of the previously used lattices of module classes. The book finishes with a study of the Boolean ideal lattice of a ring.

Through the novel concepts presented, Classes of Modules provides a new, unexplored direction to take in ring and module theory.

Classes of Modules

Product form

£115.00

Includes FREE delivery
Usually despatched within 4 days
Hardback by John Dauns , Yiqiang Zhou

1 in stock

Short Description:

Because traditional ring theory places restrictive hypotheses on all submodules of a module, its results apply only to small classes... Read more

    Publisher: Taylor & Francis Inc
    Publication Date: 19/06/2006
    ISBN13: 9781584886600, 978-1584886600
    ISBN10: 1584886609

    Number of Pages: 232

    Non Fiction , Mathematics & Science , Education

    Description

    Because traditional ring theory places restrictive hypotheses on all submodules of a module, its results apply only to small classes of already well understood examples. Often, modules with infinite Goldie dimension have finite-type dimension, making them amenable to use with type dimension, but not Goldie dimension. By working with natural classes and type submodules (TS), Classes of Modules develops the foundations and tools for the next generation of ring and module theory. It shows how to achieve positive results by placing restrictive hypotheses on a small subset of the complement submodules, Furthermore, it explains the existence of various direct sum decompositions merely as special cases of type direct sum decompositions.

    Carefully developing the foundations of the subject, the authors begin by providing background on the terminology and introducing the different module classes. The modules classes consist of torsion, torsion-free, s[M], natural, and prenatural. They expand the discussion by exploring advanced theorems and new classes, such as new chain conditions, TS-module theory, and the lattice of prenatural classes of right R-modules, which contains many of the previously used lattices of module classes. The book finishes with a study of the Boolean ideal lattice of a ring.

    Through the novel concepts presented, Classes of Modules provides a new, unexplored direction to take in ring and module theory.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account