Description

The concept of transmitting information from one chaotic system to another derives from the observation of the synchronization of two chaotic systems. Having developed two chaotic systems that can be synchronized, scientists can modulate on one phase signal the information to be transmitted, and subtract (demodulate) the information from the corresponding phase signal of the coupled chaotic system.

Chaos Applications in Telecommunications demonstrates this technique in various applications of communication systems. This book details methods of transmitting information at much higher levels of security than what is available by current techniques. Following a detailed introduction, the book demonstrates how chaotic signals are generated and transmitted. It then details the design of chaotic transmitters and receivers, and describes chaos-based modulation and demodulation techniques. The text describes how a chaos-based spreading sequence outperforms classical pseudorandom sequences in selective and nonselective channels. It also develops channel equalization techniques designed for chaotic communications systems by applying knowledge of systems dynamics, linear time-invariant representations of chaotic systems, and symbolic dynamics representations of chaotic systems. The final chapter explains a specific application for optical communications.

This volume provides the essential information for those who want an integrated view of how an established concept such as chaos can open new roads in the communications and security fields.

Chaos Applications in Telecommunications

Product form

£130.00

Includes FREE delivery
Usually despatched within 4 days
Hardback by Peter Stavroulakis

1 in stock

Short Description:

The concept of transmitting information from one chaotic system to another derives from the observation of the synchronization of two... Read more

    Publisher: Taylor & Francis Inc
    Publication Date: 31/10/2005
    ISBN13: 9780849338328, 978-0849338328
    ISBN10: 0849338328

    Number of Pages: 440

    Non Fiction , Technology, Engineering & Agriculture , Education

    Description

    The concept of transmitting information from one chaotic system to another derives from the observation of the synchronization of two chaotic systems. Having developed two chaotic systems that can be synchronized, scientists can modulate on one phase signal the information to be transmitted, and subtract (demodulate) the information from the corresponding phase signal of the coupled chaotic system.

    Chaos Applications in Telecommunications demonstrates this technique in various applications of communication systems. This book details methods of transmitting information at much higher levels of security than what is available by current techniques. Following a detailed introduction, the book demonstrates how chaotic signals are generated and transmitted. It then details the design of chaotic transmitters and receivers, and describes chaos-based modulation and demodulation techniques. The text describes how a chaos-based spreading sequence outperforms classical pseudorandom sequences in selective and nonselective channels. It also develops channel equalization techniques designed for chaotic communications systems by applying knowledge of systems dynamics, linear time-invariant representations of chaotic systems, and symbolic dynamics representations of chaotic systems. The final chapter explains a specific application for optical communications.

    This volume provides the essential information for those who want an integrated view of how an established concept such as chaos can open new roads in the communications and security fields.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account