Description

This book analyzes the generation of the arrow-categories of a given category, which is a foundational and distinguishable Category Theory phenomena, in analogy to the foundational role of sets in the traditional set-based Mathematics, for defi nition of natural numbers as well. This inductive transformation of a category into the infinite hierarchy of the arrowcategories is extended to the functors and natural transformations. The author considers invariant categorial properties (the symmetries) under such inductive transformations. The book focuses in particular on Global symmetry (invariance of adjunctions) and Internal symmetries between arrows and objects in a category (in analogy to Field Theories like Quantum Mechanics and General Relativity). The second part of the book is dedicated to more advanced applications of Internal symmetry to Computer Science: for Intuitionistic Logic, Untyped Lambda Calculus with Fixpoint Operators, Labeled Transition Systems in Process Algebras and Modal logics as well as Data Integration Theory.

Category Theory: Invariances and Symmetries in Computer Science

Product form

£122.85

Includes FREE delivery
RRP: £136.50 You save £13.65 (10%)
Usually despatched within 3 days
Hardback by Zoran Majkic

1 in stock

Short Description:

This book analyzes the generation of the arrow-categories of a given category, which is a foundational and distinguishable Category Theory... Read more

    Publisher: De Gruyter
    Publication Date: 06/03/2023
    ISBN13: 9783111080567, 978-3111080567
    ISBN10: 3111080560

    Number of Pages: 436

    Non Fiction , Mathematics & Science , Education

    Description

    This book analyzes the generation of the arrow-categories of a given category, which is a foundational and distinguishable Category Theory phenomena, in analogy to the foundational role of sets in the traditional set-based Mathematics, for defi nition of natural numbers as well. This inductive transformation of a category into the infinite hierarchy of the arrowcategories is extended to the functors and natural transformations. The author considers invariant categorial properties (the symmetries) under such inductive transformations. The book focuses in particular on Global symmetry (invariance of adjunctions) and Internal symmetries between arrows and objects in a category (in analogy to Field Theories like Quantum Mechanics and General Relativity). The second part of the book is dedicated to more advanced applications of Internal symmetry to Computer Science: for Intuitionistic Logic, Untyped Lambda Calculus with Fixpoint Operators, Labeled Transition Systems in Process Algebras and Modal logics as well as Data Integration Theory.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account