Description

This book introduces a Responsible AI framework and guides you through processes to apply at each stage of the machine learning (ML) life cycle, from problem definition to deployment, to reduce and mitigate the risks and harms found in artificial intelligence (AI) technologies. AI offers the ability to solve many problems today if implemented correctly and responsibly. This book helps you avoid negative impacts – that in some cases have caused loss of life – and develop models that are fair, transparent, safe, secure, and robust.
The approach in this book raises your awareness of the missteps that can lead to negative outcomes in AI technologies and provides a Responsible AI framework to deliver responsible and ethical results in ML. It begins with an examination of the foundational elements of responsibility, principles, and data. Next comes guidance on implementation addressing issues such as fairness, transparency, safety, privacy, and robustness. The book helps you think responsibly while building AI and ML models and guides you through practical steps aimed at delivering responsible ML models, datasets, and products for your end users and customers.

What You Will Learn
  • Build AI/ML models using Responsible AI frameworks and processes
  • Document information on your datasets and improve data quality
  • Measure fairness metrics in ML models
  • Identify harms and risks per task and run safety evaluations on ML models
  • Create transparent AI/ML models
  • Develop Responsible AI principles and organizational guidelines


Who This Book Is For
AI and ML practitioners looking for guidance on building models that are fair, transparent, and ethical; those seeking awareness of the missteps that can lead to unintentional bias and harm from their AI algorithms; policy makers planning to craft laws, policies, and regulations that promote fairness and equity in automated algorithms

Building Responsible AI Algorithms: A Framework for Transparency, Fairness, Safety, Privacy, and Robustness

Product form

£25.19

Includes FREE delivery
RRP: £27.99 You save £2.80 (10%)
Usually despatched within 3 days
Paperback / softback by Toju Duke

1 in stock

Short Description:

This book introduces a Responsible AI framework and guides you through processes to apply at each stage of the machine... Read more

    Publisher: APress
    Publication Date: 17/08/2023
    ISBN13: 9781484293058, 978-1484293058
    ISBN10: 1484293053

    Number of Pages: 190

    Non Fiction , Computing

    Description

    This book introduces a Responsible AI framework and guides you through processes to apply at each stage of the machine learning (ML) life cycle, from problem definition to deployment, to reduce and mitigate the risks and harms found in artificial intelligence (AI) technologies. AI offers the ability to solve many problems today if implemented correctly and responsibly. This book helps you avoid negative impacts – that in some cases have caused loss of life – and develop models that are fair, transparent, safe, secure, and robust.
    The approach in this book raises your awareness of the missteps that can lead to negative outcomes in AI technologies and provides a Responsible AI framework to deliver responsible and ethical results in ML. It begins with an examination of the foundational elements of responsibility, principles, and data. Next comes guidance on implementation addressing issues such as fairness, transparency, safety, privacy, and robustness. The book helps you think responsibly while building AI and ML models and guides you through practical steps aimed at delivering responsible ML models, datasets, and products for your end users and customers.

    What You Will Learn
    • Build AI/ML models using Responsible AI frameworks and processes
    • Document information on your datasets and improve data quality
    • Measure fairness metrics in ML models
    • Identify harms and risks per task and run safety evaluations on ML models
    • Create transparent AI/ML models
    • Develop Responsible AI principles and organizational guidelines


    Who This Book Is For
    AI and ML practitioners looking for guidance on building models that are fair, transparent, and ethical; those seeking awareness of the missteps that can lead to unintentional bias and harm from their AI algorithms; policy makers planning to craft laws, policies, and regulations that promote fairness and equity in automated algorithms

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account