Description
Benzimidazole: Preparation and Applications first defines the structure, physical and chemical properties of the benzimidazole compound class. Further conventional and alternative synthesis methods and important reactions of these compound derivatives are illustrated with examples. The authors provide an overview of benzimidazole-based synthetic medicine and their significant applications in treating various ailments. The chemical reactions of benzimidazole with other heterocyclic compounds/chemical reagents produce a lot of new substituted molecules, which have potential pharmaceutical applications. A literature review is presented focusing on the synthesis of chiral compounds and their subsequent applications as therapeutic compounds in order to better evaluate the results so far. Additionally, the authors discuss how nenzimidazole derivatives play a vital role in organic light emitting diodes as emissive materials, host materials, electron transport materials, hole blocking materials, etc., and have pharmaceutical applications such as antimicrobial, antihypertensive, anti-HIV and anticancer. Following this, this collection examines classes of potential chemosensors possessing benzimidazole moieties which are capable of both visual and optical estimation of target analytes over a broad concentration range and without interference of contemporary analytes. Important methodologies used for the synthesis of variedly substituted benzimidazoles are presented along with their multi-target therapeutic uses. The latest research on anti-tumor and antimicrobial benzimidazole compounds, as well as structure-activity correlations, drug design, clinical and preclinical studies is also presented. Benzimidazole-based polymers with various architecture and copolymers are discussed with a variation of properties such as mechanical, thermal stability, thermo-oxidative stability and enhanced performance. The penultimate chapter covers a critical analysis of the recent developments in benzimidazole framework research and the future scope of benzimidazole framework in ligand designing. In closing, the synthesis and biological properties of coordination compounds containing benzimidazole derivatives are presented and discussed.