Description
Nuclear Magnetic Resonance (NMR) techniques have proliferated in many fields of science and technology like bio-sensing, chemical reaction monitoring and material characterization. Since the inception of NMR as an analytical tool, improving the sensitivity by increasing the field strength has been the primary development goal. However, in order to reduce cost and environmental impact, the trend to miniaturized NMR devices and its diverse application fields enjoys increasing interest. The first part of this thesis introduces novel insights into low-power rf-excitation, which is one crucial aspect for enabling further development in this direction, by employing Frank sequences. Based on experimental data, a detailed evidence of the power savings by excitation in the linear regime is given aiming at future elimination of the rf-amplifier from the NMR spectrometer so as to allow further mobility improvements. Selective excitation by colored Frank-sequence is reported, which bears promis