Description

Description

John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach--known as Aubry-Mather theory--singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as an interdisciplinary bridge for researchers and students from different fields seeking to acquaint themselves with the topic. Starting with the mathematical background from which Mather's theory was born, Alfonso Sorrentino first focuses on the core questions the theory aims to answer--notably the destiny of broken invariant KAM tori and the onset of chaos--and describes how it can be viewed as a natural counterpart of KAM theory. He achieves this by guiding readers through a detailed illustrative example, which also provides the basis for introducing the main ideas and concepts of the general theory. Sorrentino then describes the whole theory and its subsequent developments and applications in their full generality. Shedding new light on John Mather's revolutionary ideas, this book is certain to become a foundational text in the modern study of Hamiltonian systems.

Action-minimizing Methods in Hamiltonian Dynamics (MN-50): An Introduction to Aubry-Mather Theory

Product form

£37.80

Includes FREE delivery
RRP: £40.00 You save £4.20 (10%)
Usually despatched within 5 days
Paperback / softback by Alfonso Sorrentino

1 in stock

Short Description:

John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex... Read more

 More payment options
    Publisher: Princeton University Press
    Publication Date: 26/05/2015
    ISBN13: 9780691164502, 978-0691164502
    ISBN10: 0691164509

    Number of Pages: 128

    Non Fiction , Mathematics & Science , Education

    Description

    Description

    John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach--known as Aubry-Mather theory--singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as an interdisciplinary bridge for researchers and students from different fields seeking to acquaint themselves with the topic. Starting with the mathematical background from which Mather's theory was born, Alfonso Sorrentino first focuses on the core questions the theory aims to answer--notably the destiny of broken invariant KAM tori and the onset of chaos--and describes how it can be viewed as a natural counterpart of KAM theory. He achieves this by guiding readers through a detailed illustrative example, which also provides the basis for introducing the main ideas and concepts of the general theory. Sorrentino then describes the whole theory and its subsequent developments and applications in their full generality. Shedding new light on John Mather's revolutionary ideas, this book is certain to become a foundational text in the modern study of Hamiltonian systems.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account